
Exploiting the Linux Dynamic
Loader with LD_PRELOAD

David Kaplan

david@2of1.org

DC9723 – June 2011

The Executable and linking format (ELF)

}

linkers
loaders
libraries

Linkers
combine compiled code fragments into single

memory-loadable executable
$ ld obj1.o obj2.o –o linked.o

symbol resolution
program components reference each other through symbols (ELF .symtab)

Relocation
adjustment of code/data sections

(also performed by the loader)

Loaders

copy code and data into memory

memory allocation/mapping

relocation
Also performed by the linker

execve()

Libraries

statically-linked

dynamically-linked (shared)*

collections of reusable compiled code

*historically: a shared library was something else entirely

Statically-linked libraries
code copied into final binary

be aware of: cyclic dependencies, multiple symbol definitions

$ld obj1.o obj2.o /usr/lib/libname.a

CODE

my_print() {
 printf();
}

main() {
 my_print();
} main() {

 my_print();
}

my_print() {
 printf();
}

printf() {
 vfprintf();
}

 LIBCSTATICALLY LINKED

FILESIZE

Dynamically-linked libraries
dynamic loader (ld.so) resolves symbols at exectime

Process:
- execve() loads executable code into memory
- control is passed to the dynamic linker (ld.so) which maps shared objects to program address space (resolves symbols)
- control is then passed to the application

can be called from within the application at runtime
By linking ld and calling dlopen(), etc.

CODE

my_print() {
 printf();
}

main() {
 my_print();
} main() {

 my_print();
}

my_print() {
 printf();
}

printf();

DYNAMICALLY LINKED

FILESIZE

 LIBC

So what is LD_PRELOAD?

environment var queried by dynamic linker on exec

allows dynamic linker to prioritize linking defined shared libs

$ LD_PRELOAD=“./mylib.so” ./myexec

Attack enablers

OS ‘features’

weak system security

good coding practices

general_rule:

good_for_devs == good_for_hackers;

goto general_rule;

Attack advantages

easy, effective on unprotected systems

code interception

code injection

program flow manipulation

debugging using wrapper functions

Attack disadvantages

}

can be protected against

requires access to executable

requires relevant privileges

works on used, imported symbols

Example 1 – Hello World

$ nm -D make_goodbye.so

000000000000069c T printf

 U stdout

 U vfprintf

$ nm -D hello

w __gmon_start__

U __libc_start_main

U printf

Undefined symbol

Symbol exists in .text

Example 1 – Hello World – cont.

*in practice it works slightly differently – this is just a conceptual explanation

NORMAL SYMBOL RESOLUTION:
LOADER

HELLO
printf() ??

DYNAMIC LINKER

LIBC.SO Hello World!

REDIRECTED SYMBOL RESOLUTION:
LOADER

HELLO
printf() ??

DYNAMIC LINKER

GOODBYE.SO Goodbye World!LIBC.SO
fprintf() ??

Example 2 – OpenSSH MITM

dynamically links openssl

checks public key against known_hosts with BN_cmp()

BN_cmp() must pass (== 0) for iterations 3 and 5

Example 3 – OpenSSH password logger

catch write() w/ string literal “’s password”

log read()s until ‘\n’

Example 4 – Extending ‘cat’ functionality

intercept __snprintf_check() to add to usage()

wrap getopt_long() to catch new command line option

catch write(), vfork() and launch browser for each link

provides reusable library of function sigs

(sorry about the code quality!)

./preloader

reduces repetitive tasks

tool that does *some* of the work for you

http://www.github.com/2of1/preloader

Reverse Engineering with LD_PRELOAD (Itzik Kotler)

http://securityvulns.com/articles/reveng/

Linkers and Loaders (Sandeep Grover)

http://www.linuxjournal.com/article/6463

Dynamic Linker (Wikipedia)

http://en.wikipedia.org/wiki/Dynamic_linker

man ld.so

Further reading

Know your enemy and know yourself and you can fight a thousand battles without disaster”

Sun Wu Tzu, The Art of War

“There is no right and wrong. There’s only fun and boring”

The Plague, Hackers 1995

Final thoughts

	Exploiting the Linux Dynamic Loader with LD_PRELOAD
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

