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The Executable and linking format (ELF)

}

linkers
loaders
libraries



Linkers
combine compiled code fragments into single

memory-loadable executable
$ ld obj1.o obj2.o –o linked.o

symbol resolution
program components reference each other through symbols (ELF .symtab)

Relocation
adjustment of code/data sections

(also performed by the loader)



Loaders

copy code and data into memory

memory allocation/mapping

relocation
Also performed by the linker

execve()



Libraries

statically-linked

dynamically-linked (shared)*

collections of reusable compiled code

*historically: a shared library was something else entirely



Statically-linked libraries
code copied into final binary

be aware of: cyclic dependencies, multiple symbol definitions

$ld obj1.o obj2.o /usr/lib/libname.a

CODE

my_print() {
     printf();
}

main() {
    my_print();
} main() {

    my_print();
}

my_print() {
     printf();
}

printf() {
    vfprintf();
}

  LIBCSTATICALLY LINKED

FILESIZE



Dynamically-linked libraries
dynamic loader (ld.so) resolves symbols at exectime

Process:
- execve() loads executable code into memory
- control is passed to the dynamic linker (ld.so) which maps shared objects to program   address space (resolves symbols)
- control is then passed to the application

can be called from within the application at runtime
By linking ld and calling dlopen(), etc.

CODE

my_print() {
     printf();
}

main() {
    my_print();
} main() {

    my_print();
}

my_print() {
     printf();
}

printf();

DYNAMICALLY LINKED

FILESIZE

  LIBC



So what is LD_PRELOAD?

environment var queried by dynamic linker on exec

allows dynamic linker to prioritize linking defined shared libs

$ LD_PRELOAD=“./mylib.so” ./myexec



Attack enablers

OS ‘features’

weak system security

good coding practices

general_rule:

good_for_devs == good_for_hackers;

goto general_rule;



Attack advantages

easy, effective on unprotected systems

code interception

code injection

program flow manipulation

debugging using wrapper functions



Attack disadvantages

}

can be protected against

requires access to executable

requires relevant privileges

works on used, imported symbols



Example 1 – Hello World

$ nm -D make_goodbye.so

000000000000069c T printf

                 U stdout

                 U vfprintf

$ nm -D hello

w __gmon_start__

U __libc_start_main

U printf

Undefined symbol

Symbol exists in .text



Example 1 – Hello World – cont.

*in practice it works slightly differently – this is just a conceptual explanation

NORMAL SYMBOL RESOLUTION:
LOADER

HELLO
printf()  ??

DYNAMIC LINKER

LIBC.SO Hello World!

REDIRECTED SYMBOL RESOLUTION:
LOADER

HELLO
printf()  ??

DYNAMIC LINKER

GOODBYE.SO Goodbye World!LIBC.SO
fprintf()  ??



Example 2 – OpenSSH MITM

dynamically links openssl

checks public key against known_hosts with BN_cmp()

BN_cmp() must pass (== 0) for iterations 3 and 5



Example 3 – OpenSSH password logger

catch write() w/ string literal “’s password”

log read()s until ‘\n’



Example 4 – Extending ‘cat’ functionality

intercept __snprintf_check() to add to usage()

wrap getopt_long() to catch new command line option

catch write(), vfork() and launch browser for each link



provides reusable library of function sigs

(sorry about the code quality!)

./preloader

reduces repetitive tasks

tool that does *some* of the work for you

http://www.github.com/2of1/preloader



Reverse Engineering with LD_PRELOAD (Itzik Kotler)

http://securityvulns.com/articles/reveng/

Linkers and Loaders (Sandeep Grover)

http://www.linuxjournal.com/article/6463

Dynamic Linker (Wikipedia)

http://en.wikipedia.org/wiki/Dynamic_linker

man ld.so

Further reading



Know your enemy and know yourself and you can fight a thousand battles without disaster”

Sun Wu Tzu, The Art of War

“There is no right and wrong. There’s only fun and boring”

The Plague, Hackers 1995

Final thoughts
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