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Abstract
Android is the most prevalent Linux-based mobile Op-
erating System in the market today. Many features of
the platform security (such as stack protection, key gen-
eration, etc.) are based on values provided by the Linux
Pseudorandom Number Generator (LPRNG) and weak-
nesses in the LPRNG could therefore directly affect
platform security. Much literature has been published
previously investigating and detailing such weaknesses
in the LPRNG. We build upon this prior work and show
that - given a leak of a random value extracted from
the LPRNG - a practical, inexpensive attack against
the LPRNG internal state in early boot is feasible.
Furthermore, the version of the Linux kernel vulnerable
to such an attack is used in the majority of Android-
based mobile devices in circulation. We also present two
real-world exploitation vectors that could be enabled by
such an attack. Finally, we mention current mitigations
and highlight lessons that can be learned in respect to
the design and use of future PRNGs for security features
on embedded platforms.

I. Introduction

Embedded uses of the Linux kernel are becoming
increasingly prevalent. These systems make use of
randomness in order to provide platform security
features such as ASLR, stack canaries, key generation,
and randomized IP packet identification. Such features
require that the sources of randomness are robust and
therefore cannot be easily predicted by an attacker.
There have been a number of published works
on the weaknesses in the Linux Random Number
Generator (LPRNG). In their paper, Mining Your
Ps and Qs: Detection of Widespread Weak Keys in
Network Devices, Heninger et al. [1] describe observed
catastrophic key generation failures likely due to the
fact that embedded systems that generate these keys

do so off PRNGs that fail in robustness at the time
of the key generation. In their paper they describe an
observable deterministic flow of the LPRNG due to
low boot-time entropy. Becherer et al. [2] describe an
attack against the LPRNG of an Amazon EC2 AMI
image which enables a search for an ssh key-pair
generated off the LPRNG.

Our contribution - Whereas Heninger et al. [1]
have previously observed the effects of low boot-time
entropy on real-world RSA key-pair generation and
have further studied the cause in respect to weaknesses
of the LPRNG on embedded devices, in our paper we
present a formal mathematical method for modeling
these weaknesses. This allows us to quantify the effort
required to enable active probabilistic attacks on the
LPRNG internal state.

Using an algorithm functionally similar to that of
the simulation technique postulated by Becherer et al.
[2] in their presentation (modified for our embedded
environment), we show how the mapping of a target
embedded system’s boot flow combined with an active
leak of a LPRNG value at some point during a low-
entropy part of the boot flow could allow a remote
attacker to recreate the internal state of the LPRNG.
We further demonstrate that it is possible to perform
a practical, optimized search for the LPRNG seeding
data at boot even when entropy is injected from external
sources (on vulnerable kernels).

While work by Ding et al. [3] also describes weak-
nesses in the Boot-time entropy of Android, we present
a Proof of Concept attack against a popular mobile
platform in use today. For this Proof of Concept, we
have identified a suitable remote active leak in a popular,
vulnerable version of the Linux kernel. In addition, we
have identified another leak which can be used locally
by malware on most versions of Android.

We will demonstrate our attack via two practical
resultant attack scenarios:
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In the first scenario, we demonstrate an IPv6 Denial
of Service attack against the randomly generated frag-
ment identifier in Linux kernel version 3.0.31.

In the second scenario, we show how the Android
stack canary protection could be bypassed, thereby
enabling exploitation via buffer overflow vulnerability
attack vectors.

II. Background

A. Use of Linux Kernel In Android

The Android platform is based on the Linux kernel
and as of Linux kernel 3.3/3.4 most Android patches
have been merged into the mainline kernel itself. Being
a largely open-source platform, albeit developed by
Google, many mobile manufacturers have built devices
running it. According to Net Applications, Android
is continually gaining global market share, holding
at around 37.75% at time of writing [4]. Android’s
main problem however is one of fragmentation. There
is no centralized body responsible for maintaining a
single build or code-base and manufacturers have carte
blanche to do as they wish. Furthermore, devices are
generally abandoned by their manufacturers - it is rare
that software updates are issued to older devices.

It is obvious that fragmentation leads to a security
nightmare. While Google does a good job of patching
vulnerabilities in the latest versions of the Android
code-base, manufacturers generally don’t roll out these
releases to their customers. This is true even of the
flagship devices once a certain amount of time has
passed.

Exacerbating the problem, kernel versions for var-
ious Android releases often are incongruent with the
Android platform version. For example, we found that
some modern devices are running the latest version of
Android (4.4 KitKat) on an older kernel which was
released with Android 4.3.

III. The Linux Random Number Generator

The Linux Random Number Generator consists of two
Pseudorandom Number Generators; a blocking RNG
which is exposed to user-space via the /dev/random

device and blocks requests based on a count of es-
timated entropy persisted by the kernel and a non-
blocking PRNG which is exposed both to user-space
via the /dev/urandom device and to kernel-space via
the exported get_random_bytes() function.

The LPRNG maintains three entropy pools. The input
pool acts as the main entropy store and feeds both
the blocking pool and the non-blocking pool used by
the PRNGs. Our research focuses on the non-blocking

PRNG – i.e. the non-blocking pool - and its associated
pulls (extraction of a value) from the input pool. We do
not consider the blocking pool at all as it is generally
unused during Kernel boot.

When a value is requested from the non-blocking
pool, the PRNG determines whether the prerequisite
entropy is preset in the input pool. If sufficient entropy
is available in the input pool, the pool is mixed in
to the non-blocking pool (i.e. entropy is transferred
to the non-blocking pool) via a Twisted Generalized
Feedback Shift Register (TGFSR) mixing function. In
order to extract the value, the pool is hashed (SHA1),
mixed back into itself and hashed once more. The
mixing of the hash back into the pool is intended to
provide forward security (meaning that nothing can be
known about previous values given a compromise of the
internal pool state). Data is extracted in blocks of 80 bits
and the final bits are truncated to match the requested
pull value size.

All pools are initially seeded by mixing in the current
system time in nanosecond resolution (ktime_t) to
their uninitialized pool states. Entropy can be further
added to the input pool in a number of ways (relevant
to Linux kernels prior to 3.4.9):

Input Randomness – provided by input devices
such as mouse, keyboard, touch screen.

Disk Randomness – provided by disk activities.

Interrupt Randomness – provided by triggered
interrupts (generally disabled by modern kernels).

Each of the above can trigger entropy generation off
the current system cycle count coupled together with
data provided by the source event.

The kernel persists a counter for each pool which
holds the amount of entropy in the pool as estimated
by the kernel. This value is incremented when entropy
is mixed into the pool and decremented when values
are pulled from the pools. It is important to note that
the entropy count as recorded by the kernel does not
correlate to the actual amount of entropy of the pools.
In this paper, we refer to the entropy counter value as
persisted by the kernel as the Kernel Entropy Count
(KEC).

IV. Attack

As an attacker, we would like to be able to ascertain
a random value sourced from the PRNG at a certain
point in the boot flow, meaning that we need to discern
the internal state of the entropy pools at that point.
The Shannon entropy of an attack at that point can
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be generalized as H(A) = H(pin, pnb) where pin and
pnb are the input pool state and the non-blocking pool
state respectively. In order to discern pin and pnb, we
must construct an attack which can provide us with
knowledge of the following components:

1) Input pool seed
2) Non-blocking pool seed
3) External entropic injections

Our attack consists of performing an optimized search
for the values of these components.

The LPRNG is most susceptible to attack during
early boot. An example boot flow can be observed in
Algorithm 1.

Algorithm 1 Example Initialization of PRNG Pools and
Non-blocking Pulls

1: function INITSTDDATA(pool)
2: pool.entropycount← 0
3: now← KTIMEGETREAL
4: MIXPOOLBYTES(pool,now)
5: MIXPOOLBYTES(pool,utsname())
6: end function
7:
8: function RANDINITIALIZE
9: INITSTDDATA(input pool)

10: INITSTDDATA(blockingpool)
11: INITSTDDATA(nonblockingpool)
12: end function
13:
14: on boot
15: RANDINITIALIZE
16:
17: GETRANDOMBYTES
18: INJECTENTROPY
19: GETRANDOMBYTES
20: INJECTENTROPY
21: INJECTENTROPY
22: GETRANDOMBYTES

The kernel makes extensive use of the non-
blocking pool and extracts random values via the
get_random_bytes() function. In order to perform
our attack, we require knowledge of a value pulled from
the non-blocking pool, ideally as close to the seeding
of the pools as possible. By combing through all calls
made by the kernel to get_random_bytes() in early-
boot, an attacker may be able to identify areas which
could potentially leak the necessary value to the user.

It is also necessary for us to know the order of the
pulls from the non-blocking pool up until the point of
our value leak. This will allow us to generate the correct
state for the pulls at the point of leak locally during our
attack.

t

boot start
input pool seeded
non-blocking pool seeded
pull

entropy
entropy

pull

pull: leak
entropy

pull: attacked value

Figure IV.1. Boot flow depicting seeding of pools, injection of
external entropy into the input pool and value extraction from the
non-blocking pool

The internal state of the input and non-blocking pools
are left uninitialized at boot, however on many modern
devices, this memory is zeroed. The pools are seeded
with an 8-byte ktime_t value (Figure IV.2) returned
by ktime_get_real(). The most significant DWORD
(4 bytes) holds the seconds since the epoch from the
system Real Time Clock (RTC). The least significant
DWORD represents nanoseconds. At first glance, this
method of seeding the pools should add 8 bytes of en-
tropy to each pool. In reality, the entropy is significantly
less.

64 32 0

seconds nanoseconds

Figure IV.2. ktime_t

The most significant 4 bytes of ktime_t is often
predictable. For example, an attacker could measure
the time taken to reach the RNG initialization function
since boot adding it to the btime value queried off
/proc/stat from user-space (a localized attack sce-
nario). Alternatively, as mentioned by Heninger et al.,
this value can potentially be leaked remotely via TCP
timestamps.

As mentioned, the least significant 4 bytes of
ktime_t represent nanoseconds. Theoretically this
should unpredictably hold one of 109 possible values
to provide just under 30 bits of entropy with each
pool being seeded independently from a repeat call to
ktime_get_real(). However, performing statistical
analysis on this value across a range of samples shows
a significant bias due to low variance across boots
on embedded devices, greatly dropping the effective
entropy provided by ktime_t. Our attack is predicated
on this statistical analysis yielding a significant bias
with which we can use to infer likely seed candidates.

3



As described in Section III, the kernel provides a
number of interfaces for injecting entropy into the
input pool. However a pull from the non-blocking pool
will never cause a pull from the input pool until the
input pool has a sufficiently high entropy count to
allow such a pull (KEC of at least 192 bits). During
early-boot of embedded devices, generally only a small
amount of entropy is injected into the input pool and
the KEC is low.

Considering a case where there is a sufficiently high
KEC of the input pool prior to an extraction from
the non-blocking pool, the entropy of the input pool,
H(pin), is bounded by the entropy mixed in through
the seeding of the pool - in addition to the entropy
added from external sources; H(pin)≤H(sin)+H(ext).
It follows therefore that the entropy of the attack, H(A),
is bounded by to the entropy of the input pool seed
combined with the entropy of the non-blocking pool
seed - in addition to the entropy added from external
sources; H(A)≤H(pin)+H(snb). This can be optimized
further as we can consider the seed of the non-blocking
pool to be dependent on the seed of the input pool. This
is due to the fact that the non-blocking pool seeding
ktime_t can be assumed to be an offset from the
input pool seeding ktime_t. The seed of the non-
blocking pool is therefore dependent on the seed of the
input pool such that H(A)≤H(pin)+H(onb) where onb
is the offset of the non-blocking pool seed from sin;
onb = snb− sin. Generally H(onb)� H(snb).

The KEC of the input pool as recorded by the
kernel is based off time deltas for each entropy
source across calls to add_timer_randomness()

which is responsible for injecting entropy into
the pool (as all injected entropic sources call
add_timer_randomness()). As the boot process
is generally short, it seems unlikely that there will
be sufficient time deltas across the available entropy
sources in order to accumulate an KEC of 192 bits and
therefore the input pool may not be mixed into the non-
blocking pool during early boot. The only exception
to this might be the add_interrupt_randomness()

source which holds a state per IRQ; however this
source is deprecated in the Linux kernel version under
observation in this paper. In such a case, the entropy
of the attack, H(A), is exactly equal to the independent
entropy of the non-blocking pool seed; H(A) = H(snb).

In order to determine the candidates for sin and
onb, we perform statistical analysis on samples of these
values across boots on a target device. This analysis
also yields the related Shannon entropies H(sin) and
H(onb) - giving an indication as to whether our attack
would be feasible on the particular target device under
investigation.

As H(A) ≤ H(pin) + H(onb) = H(sin) + H(onb) +
H(ext), in order to continue with our attack, we now
need to consider entropy injected from external entropy
sources, H(ext).

Entropy is injected via the
add_timer_randomness() call, mixing in a 12
byte sample of the current cycles, jiffies and a
value passed from the entropy source, num. The sample
structure which will be mixed into the input pool looks
as follows (kernel 3.0.31):
1 s t r u c t {
2 c y c l e s _ t c y c l e s ;
3 long j i f f i e s ;
4 unsigned num ;
5 } sample ;

The num value can be observed by instrumenting the
boot flow. One cannot consider the entropy injection to
fully be deterministic as there is an observed variance
in entropy addition due to jiffies and cycles. How-
ever, both jiffies and cycles are time-dependent,
enabling a probabilistic approach to determine the most
likely flow resulting in a particular entropy injection.
We generalize jiffies and cycles as our time com-
ponent.

In order to determine the time value most likely
to be mixed into the input pool, we map the flow
from boot until the point which we require a prediction
of the next value pulled from the non-blocking pool.
Calls to add_timer_randomness() are often called in
quick succession and can be considered to be grouped
together, forming what we term a set of calls. For each
set, we record the variance of time across each of the
calls in the set.

The flow from the first call to
add_timer_randomness() in a set to the last
call we term a path. This path is described in offsets
from the first value of a component of time in the
set. For example, the path [00112] for the jiffies

component of time describes a set of 5 calls where the
first two calls have a value of jiffies, the next two
calls have a value of jiffies + 1 and the final call,
jiffies + 2. We map the paths of the call sets across
our range of samples to extract the most likely paths for
each respective set. Taking, for example, a set of 6 calls,

pathA, where pathA =

{
[000111] P = 0.7
[000011] P = 0.3

, yielding

H(pathA) = 0.88 bits of entropy. Entropy injected
due to all entropy paths is H(paths) = ∑

n
k=1 H(pathk)

where n is the number of sets and the paths are
assumed to be independent.

Once we have mapped the paths, we consider the
variance of time of the first call in each path in
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respect to the value of time of the final call in the
previous path (i.e. the dependency of the paths). We
term this offset the distance, ∆, between the paths.
This distance is the therefore the offset between two
sets of calls. The distances between two paths, pathB
and pathA, is ∆BA. Entropy injected due to variance
between sets is H(∆s) = ∑

n
k=1 H(∆hk) where n is the

number of sets.

The only remaining unknown is the initial value
of the time which could be dependent on sin resulting
in a lower entropy for H(time|sin).

Therefore, total entropy due to external entropy
injection is H(ext)≤ H(paths)+H(∆s)+H(time).

If the series of pulls before the leak is constant, the
formalization of the attack is now complete. We can
generalize further if there is some variance in the pulls
before the leak. Let L = ((n1,e1),(n2,e2), . . . ,(nk,ek))
be a vector denoting a series of pulls, where ni is the
number of pulled bytes, and ei denotes the input pool
bytes mixed into the non-blocking pool before the pull,
(paths,∆s, time). The last pair (nk,ek) denotes the pull
of the leak. In the case of a constant series of pulls
before the leak, H(L) = H(ext). A leak resulting from
user-space applications will have a H(L) dependent on
variance due to concurrency.

A complete attack is therefore yielded in
H(A) ≤ H(sin)+H(onb)+H(L). In order to optimize
the search, we attempt candidate values (sin, onb, L) in
descending order of inferred probabilities. Let N be the
number of attempts until a success, then the expected
number of candidates attempted is E(N) = ∑

n
k=1 k · pk

where {pk}n
k=1 are the ordered inferred probabilities

(p1 ≥ p2 ≥ ·· · ≥ pn) of the candidates. Further search
optimization follows if one leak path, L1, is a prefix
of another L2, i.e. L1 = ((n1,e1),(n2,e2), . . . ,(nk1 ,ek1))
and L2 = ((n1,e1),(n2,e2), . . . ,(nk1 ,ek1), . . . ,(nk2 ,ek2)).

V. Random Value Leak

In order to perform our attack, we require a leak of a
random value pulled from the non-blocking pool during
early boot. We were able to identify a number of areas
which could potentially leak the necessary value to the
user.

A. Stack Canary/Auxilliary Vector of Zygote

On Android, application processes are spawned by
forking the Zygote (app_process) process (which is
executed on boot).

Zygote initializes an instance of the Dalvik Virtual
Machine and preloads the necessary Java classes
and resources. It also exposes a socket interface for
application spawn requests. When it receives such a
request, the Zygote process forks itself to create a
new app process with a preinitialized address space
layout. This method for spawning processes introduces
a known weakness described by Ding et al. [3] to the
stack canary protection mechanism due to the fact that
forked processes are not execve()’d and therefore the
stack canary value and auxiliary vector is inherited
from parent process.

As detailed in Section VII-B, on Android versions
prior to 4.3, stack canaries are generated from a 4-byte
pull from the LPRNG and, as all apps are forked()
from Zygote, they share the same, parent, canary value.
As any application can simply inspect its own memory
space and extract this canary value, this constitutes a
leak that we can use to attack the LPRNG state.

On Android versions 4.3 and above, canary values are
generated directly from the AT_RANDOM of the auxiliary
vector which can be leaked in a similar fashion. In fact,
leaking the AT_RANDOM value is possible on versions
prior to 4.3 as well as the auxiliary vector exists within
the process memory space regardless of whether or not
it is used for the stack canary.

B. IPv6 Fragment Identifier

An IPv6 packet of size greater than Maximum Trans-
mission Unit (MTU) size of the network interface is
split up into fragments and transmitted. In order to
defend against packet fragmentation attacks, the kernel
assigns a random value to the packet identifier [5]. This
hinders the ability of an attacker to guess the fragment
identifier. In kernel versions ≥ 3.0.2 < 3.1, the identifier
value is calculated off a value pulled from the non-
blocking pool in early-boot (simplified in Algorithm 2).

Algorithm 2 IPv6 fragment generation
1: on boot persist
2: hashidentrnd← GETRANDOMBYTES(4)
3:
4: on generate fragment ident . (simplified)
5: hash← JHASH2(address,hashidentrnd)
6: ident← hash+1

In order to leak our random value, we can send
an IPv6 packet of size greater than MTU size to an
address we control and capture the fragment identifier
(see Figure V.1). For the first packet sent to a destination
address, the identifier is usually a hash (jhash2) of the
random value pulled at boot (hashidentrnd) incremented

5



by 1. We therefore can calculate the value of hashiden-
trnd given the ability to reverse the jhash2 hashing
function.

We are able to actively leak this fragment identifier
remotely by sending an IPv6 ICMP “Echo request”
with data size greater than target device interface
MTU. As the “Echo request” requires the target to
respond with an “Echo reply” with exactly the same
data - and the size is greater than the interface MTU -
a fragmented packet will be returned by the target.

Attacker Target

Echo request fragment 0

Echo request fragment n

...

Reassemble
packet

Generate
identifierEcho reply fragment 0

Record
identifier

Echo reply fragment n

...

Figure V.1. IPv6 remote fragment leak

C. IPv6 Private Temporary Address

The kernel has the ability to create a private
temporary IPv6 address for an interface. The lower
64 bits of the address are randomized (EUI-64) and
appended to a valid IPv6 address suffix to create a valid
private address. This functionality is enabled via setting
/proc/sys/net/ipv6/conf/all/use_tempaddr

to 2 (the default on Ubuntu 13.10 and 14.04 and
potentially on many other modern distributions).
Unfortunately, this functionality – while supported by
the kernel – is disabled on our Samsung Galaxy S2
target phone.

VI. Experiment

The attack was built against our target device – a
Samsung Galaxy S2 running Android 4.2 (Jelly Bean)
and kernel 3.0.31.

We make use of the IPv6 Fragment Identifier leak as
described in Section V-B.
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Figure VI.1. PMF depicting sampled input pool seed value (showing
a clear bias) on Galaxy S2. 1000 bins of 19 bits

A. Input- and non-blocking pool entropy

In order to define the parameters for the optimized
search, we sampled approximately 2,500 input/non-
blocking seed pairs, by adding printk() debug state-
ments to the RNG initialization function, booting the
device, dumping the output of kernel ring buffer
with dmesg (which we enabled by modifying the
initramfs) and rebooting (the effect of the printk()

would need to be compensated for when calculating the
search parameters in order to perform a blind, real-world
attack).

Interestingly, we observed that the most-significant 4
bytes of ktime_t on the ARM systems we tested were
always zero. We therefore only needed to consider
the least significant 4 bytes (nanoseconds). Probability
mass functions were generated off the sampled seeds
to determine the search ranges for both the input pool
seed, sin, and the offset of the non-blocking pool seed,
onb.

Input pool seed – by experimentation we determined
the optimum bin size to be 11.4 bits. The Shannon
entropy of the pool, H(sin)∼= 18 bits (See Figure VI.1).

Non-blocking pool seed – again by experimentation,
the bin size was selected to be 3.3 bits. The Shannon
entropy of the pool, H(onb)∼= 10 bits (See Figure VI.2).

Total Shannon entropy due to pool seeds is therefore
H(sin)+H(onb)∼= 28 bits.

B. External entropy injection

On our S2 device we observed that the input pool
will never be mixed into the non-blocking pool due
to the fact that insufficient entropy is injected at
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Figure VI.2. PMF depicting sampled non-blocking pool seed offset
from input seed on Galaxy S2. 1000 bins of 3.3 bits

boot and the KEC 192-bit threshold is never reached
before the leak of the random value. As an at-
tack based on the non-blocking pool only is trivial
(H(A) = H(pnb) = H(snb)), we modified the source
code in order to artificially increase the KEC prior
to the leak in order to make sure that the input
pool had a KEC of at least 192 bits. We did this
by adding 16 calls to rand_initialize_irq() and
add_interrupt_randomness() to the initialization
function of the s3c-udc USB driver which is executed
by the kernel early in the boot flow. This modification
allows us to demonstrate an attack on the input pool
seed as well. Whilst not necessary for a real-world
attack against the Galaxy S2 in early-boot, we wished
to prove that an optimized search for the seeds is
feasible even with additional external entropic addition
- together with the entropy added via the seeding of the
input pool itself. The modified flow, including external
entropy sources can be seen in Algorithm 3.

Algorithm 3 Modified Flow Including Injected Entropy
1: on boot
2: RANDINITIALIZE
3: ADDINTERRUPTRANDOMNESS . kernel

modification
4: GETRANDOMBYTES(8)
5: ADDDISKRANDOMNESS
6: ADDINPUTRANDOMNESS . called by module A
7: GETRANDOMBYTES(4) . called by module B
8: hashidentrnd← GETRANDOMBYTES(4) . called

by the ipv6 subsystem

To continue with our attack, we now need to consider
entropy injected from external entropic sources via the
sample structure of the add_timer_randomness()

call.
On our target device, the 32 bit sample.cycles

value is always zero. The 32 bit num variable
is a deterministic value set by the caller of
add_timer_randomness() which we obtain by
instrumenting the kernel boot flow. We therefore
only need to consider sample.jiffies as our
generalized time value. Interestingly, the 16 most
significant bits are always 0xffff. As a result,
there is an upper bound of 16 bits of entropy per
call to add_timer_randomness() to which there
are 28 calls in our flow. In practice, however,
the entropy is significantly less due to the fact
that add_timer_randomness() is called in quick
succession in three separate groupings (sets); the
first (which we artificially added by modifying the
kernel) with 16 calls, the second with 10 calls and the
third with 2 calls. As the calls are executed in quick
succession in each set, we observe that the variance of
jiffies across each of the calls in each respective set
is small; i.e. each call in a set has ji f f ies+ x where
x ∈ {0,1}.

We mapped the paths of the call sets across our
range of 2,500 samples to extract the most likely paths
for each respective set:

The first set consisting of our artificially injected
16 calls has PrpathA [00000000000000] = 1, therefore
entropy H(pathA) = 0.

The second set of calls provides some variance:

pathB =


[0000000111] P = 0.822
[0000000011] P = 0.155
[0000000001] P = 0.022
others P = 0.001

with H(pathB)∼= 0.79.
The third set is observed to be PrpathC [00] = 1,

therefore H(pathC) = 0.
Total additional entropy due to injected run-time

entropy paths is therefore H(paths) = H(pathB)∼= 0.79
bits.

As described in our generalized attack, we now
consider the distance between each respective path.
The distances between pathB and pathA, and pathC
and pathB are defined as ∆BA and as ∆CB respectively.

∆BA =


79 P = 0.178
80 P = 0.75
81 P = 0.069
others P = 0.003
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∆CB =

{
0 P = 0.507
1 P = 0.493

Shannon entropy H(∆BA) ∼= 1.05 bits and H(∆CB) ∼= 1
bit. Total entropy due to distance across the 2,500
samples is therefore H∆

∼= 2.05 bits. External
entropy injected thus far in our attack is therefore
H(pathB)+H(∆BA)+H(∆CB)∼= 2.84 bits.

The only remaining unknown is the initial value
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Figure VI.3. PMF depicting sampled jiffies

of the jiffies itself. In order to determine this value,
we generated a PMF across our sample set (which
can be seen in Figure VI.3). Considering this PMF
independently, its entropy would be H( ji f f ies) = 4.3
bits, however one can clearly observe a direct
correlation between the jiffies value and the input
seed value (Figure VI.1). Experimentally, we found
that jiffies increments every 5ms. Furthermore,
we observed that the time between the seeding
of the input pool (sin) and the first addition of
external entropy is fairly constant with a drift of
< 5 ms yielding a deterministic relative function
ji f f ies = f (sin). Therefore we can consistently predict
(H( ji f f ies|sin) = 0) the jiffies value for any given
input seed according to:

ji f f ies = base+‖sin/ttick‖
= 0x15a4+‖sin/5M‖

We investigated whether we could perhaps further
optimize by considering the relation between the
distances and the paths - and between the initial
jiffies value - in order to determine whether
there is a statistically significant dependency which

could allow us to determine a likelihood of a certain
distance/initial jiffies value being present for any
specific configuration of pathB. Looking at the distance
and jiffies offset for incidences of the most likely
path ([0000000111]) only, we notice that the total
entropy is improved by a mere ∼ 0.09 bits which is
statistically insignificant over our sample set.

As the leak in this experiment occurs in kernel-space
and before execution concurrency, H(L) = H(ext).

C. Constructing the attack

Based on the above, total Shannon entropy for our
attack is H(A) = 30.84 bits. The KEC is greater than
192 bits and therefore one can clearly see that the actual
entropy is significantly less than that recorded by the
kernel. We compute the ranges of candidates to attempt.
Each candidate is comprised of sin, onb, path, and ∆.
In order to optimize the search, we attempt candidate
values in descending order of inferred probabilities. The
resultant ordered list of candidate ranges is further split
into 400 sets of 50 candidate ranges each in order to
assist with parallelization of the search. Each candidate
range is 14.82 bits in size, giving a coverage of ≈ 80%
(see Figure VI.4).

0 500 1000 1500 20000.0
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0.6
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Figure VI.4. Probability of a match within 2000 sets of 50 candidate
ranges of size 215.8

Let N∗ be the number of attempts of our search
algorithm until it stops, then the expected number of
candidates attempted is E(N∗) = ∑

ψ

k=1 k · Pr[N∗ = k]
where ψ is the 8th decile of N:

N∗ =

{
n < ψ Pr[N = n]
ψ Pr[N ≥ ψ]

Therefore the expected number of attempts
E(N∗)∼= 226.5.
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The flow of the search can be seen in Algorithm
4. For each candidate, the algorithm generates an ident
which is compared against the expected (i.e. leaked)
value, forming the ’test’.

Algorithm 4 Seed Search with IPv6 Fragment Identifier
Leak

1: function TESTCANDIDATE(hashidentrnd)
2: ident← JHASH2(address,hashidentrnd)
3: ident← ident +1
4: f ound← ident == expected
5: return f ound
6: end function
7:
8: for all sin,onb, pathB,∆BA,∆CB do
9: RESETPOOLS

10: INITPRNG(sin,onb)
11: ADDINTERRUPTRANDOMNESS
12: GETRANDOMBYTES(8)
13: ADDDISKRANDOMNESS(pathB,∆BA)
14: ADDINPUTRANDOMNESS(∆CB)
15: GETRANDOMBYTES(4)
16: hashidentrnd← GETRANDOMBYTES(4)
17: f ound← TESTCANDIDATE(hashidentrnd)
18: if f ound then . match found
19: break
20: end if
21: end for

We performed the search with the sets distributed
over 8 1.6 GHz virtual CPU cores in 10 Windows
Azure XL Virtual Machine instances (for a total of
80 concurrent executions). We observed that each core
executes ∼ 86,000 (216.4) tests per second with time to
cover all 400 sets < 3 minutes (accounting for overhead
in range distribution instructions to cloud servers). The
cost of running the 10 8-core Windows Azure VM
instances is 5¢per core per hour yielding a total cost
of attack (given 5 minutes of up-time) of a mere 34¢.

D. Newer devices

The Samsung Galaxy S2 - while still present in large
quantities in the market (3.8% share at time of writing
[6]) - is now an aging device. However our attack can
most likely be applied to a majority of Android devices
in the market today (given a suitable information leak).
This is due to the fact that over 90% of all Android
devices at the time of writing [7, 8] are running Android
4.3 or older and therefore (while we have no concrete
data to support this) could be running a vulnerable
kernel. Furthermore, we investigated whether our attack
could work on some of the newer devices as well (with
the latest version of Android - 4.4 KitKat).

The PRNG kernel code of the stock Samsung Galaxy
S4 (Exynos version) running Android 4.4 may still
be vulnerable to attack using the method described
above. Shannon entropy H(sin) = 16 bits (Figure VI.5)
and H(onb) = 12 bits (Figure VI.6) over 647 samples.
However we noticed that the init process on our 4.4
ROM writes to the LPRNG thereby adding entropy to
the non-blocking pool (as described in Section VIII). It
should however be possible to perform an attack against
a S4 device running Android 4.3 using the AT_RANDOM

leak as described in Section V-A.
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Figure VI.5. PMF depicting sampled input pool seed value on a
Galaxy S4. 1000 bins of 14.5 bits
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Figure VI.6. PMF depicting sampled non-blocking pool seed offset
from input seed on a Galaxy S4. 1000 bins of 6.4 bits

Looking at the available kernel sources for the Mo-
torola G (Android 4.3), we noticed that it too uses
a vulnerable version of the PRNG code. We did not
investigate whether there is a leak that could enable the
attack.
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The latest version of the kernel sources available in
the git repository (at the time of writing) for the Google
Nexus 5 (Hammerhead) include a newer version of the
LPRNG code which includes some of the mitigations
detailed in Section VIII. We did not spend significant
time investigating the resultant PRNG flow and there-
fore cannot comment on the impact of these mitigations
on our attack.

VII. Exploitation Vectors

A. IPv6 fragmentation attacks

Atlasis [9] describes a number of potential attacks
using IPv6 fragmentation. Our search algorithm allows
us to generate an expected fragment identifier for any
destination address. We can use these identifiers to
perform an off-path Denial of Service (DoS) against
a target (specifically the S2 running vulnerable kernel
3.0.41) as will be described below.

For our Proof of Concept, we perform a DoS against
a fragmented “Echo reply” packet (ping reply). Two par-
ties, our target T (S2 mobile phone) and peer X wish to
communicate over IPv6. Attacker, A, wishes to disrupt
the communication. The nature of the communication
is such that IPv6 packets will be fragmented (size >
MTU). In this case, X wishes to send an “Echo request”
(ping) to T and A wishes to disrupt the reply. The full
flow of the attack is as follows (Figure VII.1):

1) Prior to communication between T and X, At-
tacker A sends an “Echo request” with size >
MTU to target T

2) T responds with a fragmented “Echo reply”
3) A uses the fragment identifier from the reply to

perform a search for seed data as described in
Section VI

4) A then calculates the fragment identifier for a
packet from T to destination X

5) A spoofs an “Echo reply” fragment from T and
sends it to X with invalid data, IPv6 fragment
offset and M flag set to 0 (last fragment)

6) X sends a fragmented “Echo request” to T
7) T responds with an “Echo reply”
8) X does not reassemble the fragmented packets

correctly as the invalid fragment from attacker A
is spliced in thereby causing the ICMPv6 “Echo
reply” checksum to fail; X therefore drops the
“Echo reply.”

Theoretically, should the attacker be able to construct a
fragment with data such as to cause the checksum to be
valid, the above attack flow could be used to perform a
fragment injection attack.

X

T A

(7)
Echo
reply

(6) Echo
request

(2) Echo reply

(1) Echo request

(5) Spoofed
fragment

Figure VII.1. IPv6 ping DoS

B. Stack canary bypass

A stack canary is a protection mechanism to mitigate
buffer overflow vulnerabilities. A stack canary consists
of a persisted random value which is placed on the
stack at a point where a buffer could potentially harm
the integrity of the data or code execution. Code then
checks that the value on the stack matches the expected
persisted value. Should a mismatch occur, execution is
halted or transferred to an appropriate error handling
routine. The GNU Compiler Collection (GCC) com-
piler generates code which pushes the canary value
(__stack_chk_guard) onto the stack after the return
address but before any local variables (see Figure VII.2).
This value is checked when the function returns.

Figure VII.2. Example stack layout depicting canary placement

On Android 4.2.2 and below (relevant to our Galaxy
S2 running Android 4.1.2), the canary value is con-
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structed using a value pulled from the /dev/urandom

device exposed by the LPRNG module.
When Android’s libc.so (Bionic) is loaded,

the dynamic linker (/system/bin/linker), calls
__guard_setup() which assigns the stack canary
pointer as follows:

1 fd = open ( " / dev / urandom " , O_RDONLY) ;
2 i f ( fd != −1) {
3 s s i z e _ t l e n = r e a d ( fd , &

_ _ s t a c k _ c h k _ g u a r d , s i z e o f (
_ _ s t a c k _ c h k _ g u a r d ) ) ;

4 . . .

On Android 4.3 and above (relevant to the Galaxy
S4 stock ROM which we tested), the stack canary value
is constructed using the auxiliary vector. The auxiliary
vector is a list of key-value pairs that the kernel’s ELF
binary loader (/fs/binfmt_elf.c in the kernel source)
populates when a new executable image is loaded into
a process. AT_RANDOM is one of the keys that is placed
in process’s auxiliary vector; its value is a pointer to
a 16 random byte value provided by the kernel. The
dynamic linker uses this value to initialize the stack
canary protection.

An executable image is loaded into a process using
the execve system call. The entry point of the execve

system call is the sys_execve() function. This func-
tion delegates its work to the do_execve() routine.
Figure VII.3 illustrates the flow from do_execve() to
the point where the 16 random bytes of AT_RANDOM are
generated and placed in the memory of the user-space
process.

Figure VII.3. Auxiliary vector AT_RANDOM generation

On libc.so load, the dynamic linker calls the C run-
time initializer __libc_preinit() which then calls
__libc_init_common(). The latter is responsible for
assigning the stack canary pointer as follows:

1 _ _ s t a c k _ c h k _ g u a r d = ∗ r e i n t e r p r e t _ c a s t <
u i n t p t r _ t ∗>( g e t a u x v a l (AT_RANDOM) ) ;

As can be seen from the above, the stack canary is
the 4 upper bytes of AT_RANDOM. The kernel generates
an AT_RANDOM for each process, therefore each process
will have a unique stack canary value.

Our attack allows us to generate a likely candidate for
the stack canary of a process executed on boot. Once
we have performed a successful search for the random
pool seeds (and therefore can re-create the pool states
locally), we can then extract bytes from our local
non-blocking pool in the order that they are extracted
on boot. This allows us to call get_random_bytes()
the prerequisite amount of times up until the point
where the target process’s canary is to be pulled from
the pool. For the initial processes executed (such
as /sbin/ffu and /system/bin/e2fsck) we can
generate canary values with a probability that tends to
determinism. As further processes are executed in time
however, the probability that we are able to generate the
correct value is impacted. This is due to the variance
in process execution order due to concurrency - which
affects us in two ways: Firstly, the scheduler is able
to schedule execution concurrently across a number of
logical threads and therefore it’s difficult to consistently
predict the order in which each process will perform
an extraction from the non-blocking pool. Secondly,
there is a race condition that can occur within the
extraction of AT_RANDOM from the non-blocking pool
itself [1]. The race condition is due to the fact that
entropy is extracted in 10 byte blocks. AT_RANDOM is
16 bytes long, so two extractions of 10 bytes each
need to be performed in order to pull the 16 bytes
from the non-blocking pool. As two processes may be
scheduled to execute concurrently, the extraction from
the non-blocking pool by the second process could
conceivably take place before the extraction of the
final 10 bytes of AT_RANDOM but after the extraction
of the first 10 bytes. Any attack that is predicated
on prediction of the canary value for a process will
therefore need to take this variance into consideration.

In order to determine the effect of concurrent
execution on a process in early boot on the S2, we
recorded canary values for fixed seeds & entropy
across 503 samples. The probability that the most
likely canary value occurs for each process can be seen
in Figure VII.4.

As an example of an early boot service that has
been found vulnerable, in September 2013 we privately
disclosed a buffer overflow vulnerability in Android
4.3’s keystore service to Google (CVE-2014-3100)
(Hay and Dayan [10]). This vulnerability was fixed
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Figure VII.4. Probability of most likely candidate for boot processes
on Galaxy S2

in Android 4.4 and subsequently publicly disclosed
in June 2014. For the practical exploitation of this
vulnerability, one would need to bypass the stack
canary protection. As described above, our attack could
potentially be used to ascertain the stack canary value
(with a certain probability due variance as a result
of concurrency) for the keystore process as it is
launched in early boot.

VIII. Mitigation

A. State persistence

It is widely recommended that entropy is persisted
across boots by pulling prior to device shutdown and
mixing the pulled value on next boot. We observed
that numerous Linux distributions do in fact do this,
however this measure is of limited effectiveness. This
is the due to fact that this value is usually persisted on
the filesystem and is pulled from a user-space script.
Therefore, the PRNG can still be attacked prior to the
entropy being mixed in in user-space; for example in an
attack such as our fragment injection attack as described
in Section VII-A, or by attacking the stack canary of the
processes executed prior to script execution. There has
been some discussion regarding applying the persisted
state in kernel-space (perhaps passed by the bootloader)
[11]. In our opinion such a move could provide good
mitigation in certain use-cases.

B. Trusted external entropy injection

There is a move to use trusted external sources such
as web-based sources in order to add entropy to the
pools on boot (such as Ubuntu’s Pollinate service, or
random.org’s randbyte api) and doing so is to be en-
couraged. However the kernel network stack is usually
brought up only after the kernel RNG code and the
external entropy request is usually mixed in from user-
space.

C. Hardware RNG inputs

Hardware Random Number Generators (HWRNGs)
are becoming increasingly available on modern plat-
forms. In 2012 Intel added support for a new instruction,
RDRAND, in their Ivy Bridge CPUs. RDRAND is the
output of a 128-bit HW PRNG that is compliant to NIST
SP 800-90A. Furthermore, other device vendors provide
HWRNGs as IP blocks on their SoCs.

The Linux kernel supports the RDRAND Intel instruc-
tion (via ARCH_RANDOM) which the kernel RNG code
uses to mix values into the entropy pools.

On devices such as those using Qualcomm’s MSM,
Samsung’s Exynos, and other SoCs with RNG support,
the HWRNG is provided via a kernel device driver
and exposed over /dev/hw_random. A user-space dae-
mon/script is often used to mix in entropy pulled from
the HWRNG on these devices into the LPRNG by
reading from /dev/hw_random and writing to /de-

v/random at regular intervals [12].
If the SoC supports the CONFIG_ARCH_RANDOM kernel

flag (meaning that there is either support in the instruc-
tion set or via a HWRNG IP block), the LPRNG module
will mix in HWRNG values during initialization of the
entropy pools. This solves the problem of low boot-time
entropy.

Though a number of modern, commonly used ARM-
based SoCs do have an HWRNG, random values are
generally not pulled from the HWRNG by the LPRNG
device itself (rather, it is exposed through a device as
explained above). This is true for the kernels of the
Google Nexus 4/5 and Samsung Galaxy S4/S5 which
we investigated.

The LG G2 and G3 kernels includes code
(/arch/arm/mach-msm/early_random.c) which uti-
lizes hardware-generated random numbers via a call to
TrustZone during early boot. This could also mitigate
issues with low boot-time entropy.

We believe that our research may still be relevant
in a world of HWRNGs. It is conceivable that some
HWRNGs may be susceptible to external manipulation
(such as by changing their physical properties to influ-
ence the robustness of their randomness) [13, 14]. Also,
some implementations might make use of microcode
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as part of their implementation and it is conceivable
that there might be instances of microcode that could
be vulnerable to exploitation (the impact of which is
demonstrated by Hornby [15]). There has been some
discussion on whether the risk of instruction compro-
mise should be mitigated via hashing the RDRAND
value into the entropy pools instead of XOR-ing it in
[16, 17].

D. Changes to the PRNG in latter Kernels

1) Device randomness entropic source: In Kernel
3.4.9 a new entropic source for adding device ran-
domness was added. The add_device_randomness()

function calculates a time value ( ji f f ies⊕ cycles) and
mixes it - together with a value provided by the caller
- in to both the input and non-blocking pools. The
time value may be deterministic or predictable using
the same techniques as described in our attack above,
however the use of the call to mix in an unpredictable
value to the pools could be interesting. According to
the Kernel developers, this entropy source was added
in order to provide a method for differentiating entropy
flows across multiple devices and not to specifically
add entropy itself. The effectiveness of this measure
depends on how it’s used. Any use which adds a value
which can be discerned by an attacker would not prevent
an attack. For example, adding the MAC address of a
specific device would only be effective if an attacker
could not discerned that MAC address (which might be
possible both remotely and locally). On the flip side
using an applications processor chip-id of reasonable
length which might only be determinable locally by a
privileged process could potentially provide a higher
level of protection; or alternatively adding the value
of an uninitialized device register could also be useful
(provided that there is no way to externally predict or
influence the value of the register).

2) Improvements to add_timer_randomness(): The
add_timer_randomness() function now mixes in
early boot entropy into the non-blocking pool if there
is insufficient entropy in the pool (< 128 bits). This
removes the effect of completely ignoring external en-
tropy sources prior to the input pool having accumulated
sufficient entropy in order to have been mixed in to the
non-blocking pool. Nevertheless the resultant effect on
entropy may still be predictable or deterministic for the
same reasons as before.

3) Return of interrupt randomness entropic source:
The interrupt randomness addition routine has been
rewritten and now can actively be used by the kernel.
We have not investigated the effectiveness of the new
implementation.

4) x86 RDSEED: RDSEED is an x86 instruction set
extension which will be introduced in Intel Broadwell
CPUs [18]. It is guaranteed to always pull from a True
Random Number Generator (TRNG) and is therefore
useful for seeding PRNGs. Patches have been submitted
to Linux kernel 3.15 to support this instruction [19].

IX. Conclusion

In this paper we demonstrated a practical remote attack
on the LPRNG as used in Android in the majority of
Android devices in use today. We modified the kernel in
order to show that an attack at early boot is feasible even
when considering limited entropy sources. Additionally,
we briefly commented on current/future mitigations.

Even though weaknesses in the LPRNG are well
known and have been discussed in various publications,
we believe that our research is helpful in quantifying
the issue and demonstrating how such an attack could
be built. We hope that our work will encourage device
vendors and PRNG developers alike to give thought
as to how their chosen random number generators
actually function and highlight the risks of ineffective
implementations.
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